a2 United States Patent

US009189195B2

(10) Patent No.: US 9,189,195 B2

Block 45) Date of Patent: Nov. 17,2015
(54) INTEGRITY MONITORING GOG6F 3/0605; GOG6F 3/0631; GOGF 3/147,
] GOG6F 9/5077;, GOGF 12/0223; GOGF 12/0284;
(75) TInventor: Gerald J. Block, Vista, CA (US) GO6F 12/1441; GO1C 23/00; GO1C 23/005;
. GO09G 2380/12
(73) Assignee: SANDEL AVIONICS, INC., Vista, CA USPC oo 711/170
Us) See application file for complete search history.
(*) Notice: Subject. to any disclaimer,. the term of this (56) References Cited
patent is extended or adjusted under 35
U.S.C. 154(b) by 101 days. U.S. PATENT DOCUMENTS
(21) Appl. No.: 13/366,926 5,666,111 A 9/1997 Servat et al.
5,969,670 A 10/1999 Kalafus et al.
1. 7,724,155 Bl 5/2010 Anderson et al.
(22) Filed: Feb. 6,2012 7,724259 B2 52010 Hedrick et al.
(65) Prior Publication Data (Continued)
US 2012/0203997 A1 Aug. 9, 2012 FOREIGN PATENT DOCUMENTS
Related U.S. Application Data WO WO0142932 Al * 62001 ococcrnne GOGF 13/00
(63) Continuation-in-part of application No. 11/872,643, Primary Examiner — Charles Rones
filed on Oct. 15, 2007, now Pat. No. 8,111,920. Assistant FExaminer — Andrew Russell
(60) Provisional application No. 60/851,950, filed on Oct. (74) Attorney, Agent, or Firm — Mark D. Wieczorek; Mayer
16, 2006, provisional application No. 60/852,246, & Williams PC
filed on Oct. 16, 2006.
57 ABSTRACT
(51) Int.CL Systems and methods are described here to provide a degree
GO6F 12/14 (2006.01) or level of certification to a resident application such as an
Go6r 12/02 (2006.01) operating system, e.g., Linux®. In a Linux® implementation,
GO6F 3/147 (2006.01) the operating system provides a robust environment including
GOIC 25/00 (2006.01) many seasoned communication stacks, e.g., TCP/IP, USB,
GO6F 9/50 (2006.01) and the like. However, Linux® is not certified to the level
GOIC 23/00 (2006.01) necessary to be a part of many avionics applications. To
(52) US.CL eliminate the need to certify all of such an operating system,
CPC v GO6F 3/147 (2013.01); GOIC 23/00 such certification being highly costly, the avionics application
(2013.01); GOIC 25/00 (2013.01); GOIC itself may be protected so that the operating system cannot
23/005 (2013.01); GO6F 9/5077 (2013.01); alter the application’s operating environment, e.g., applica-
GO6F 12/0284 (2013.01); GO6F 12/14 tion code and data, once the application is loaded and running.
(2013.01); GO6F" 12/1441 (2013.01); GO9G In this case, only the application requires certification at the
2380/12 (2013.01) highest level, and not the operating system such as Linux®.
(58) Field of Classification Search

CPC GOG6F 12/023; GOGF 3/067, GOGF 9/5016;

pass]

11 Claims, 7 Drawing Sheets

CONFIGURING § 252
SETTI 3
AN M
SEPARATE APP

AND 08

FUMNING
APPLICATION

g

MONITORING
R SETTINGS

US 9,189,195 B2

Page 2
(56) References Cited 2004/0170046 Al* 9/2004 Belnetetal. 365/145
2005/0024341 Al* 2/2005 Gillespieetal. 345/173
U.S. PATENT DOCUMENTS 2005/0288939 Al 12/2005 Peled et al.
2006/0001553 Al* 1/2006 Hedrickccccooevvnnee 340/971
2002/0144010 Al* 10/2002 Younisetal. 709/314 2006/0059253 Al 3/2006 Goodman et al.
2003/0101322 Al* 5/2003 Gardner 711/163
2003/0163662 Al* 8/2003 Glew et al. .. 7117202

2004/0070920 Al* 4/2004 Flueliccooevvvinninnn. 361/500 * cited by examiner

U.S. Patent Nov. 17, 2015 Sheet 1 of 7 US 9,189,195 B2

U.S. Patent Nov. 17, 2015 Sheet 2 of 7 US 9,189,195 B2

Fis 2

U.S. Patent Nov. 17, 2015 Sheet 3 of 7 US 9,189,195 B2

OPERATING
SYSTEM,

INCLUDING
CONTROLLERS AVIONICS APPLICATION,
FOR HARD COMPONENT - RUNNING IN
DRIVES, DISK UBAT MEMORY
READERS, CARD 050
READERS, ETC. 20~

%ﬁmx

MBI MONITOR

FiG. 3

U.S. Patent Nov. 17, 2015 Sheet 4 of 7 US 9,189,195 B2

CONFIGURING | 282
280 SETTINGS OF j
”\w AN MMUTO
BEPARATE APP
AND Q5

l

25
RUNNING 08 b

i

FHUMMING
APPLICATION

l 258

MONITORING |/
MIMU SETTINGS

FiG. 4

U.S. Patent Nov. 17, 2015 Sheet 5 of 7 US 9,189,195 B2

AVIONITS COMPONENT

MEMORY FOR
CONFIGURING | 252
SETTINGS OF |
ANMMUTO T
SEPARATE APP
AND OS

MEMORY FOR w/ss;;
NETANTIATING
08 00

MEMORY FOR #/;
INSTANTIATING
APPLICATION

e} 268
MEMORY FOR
/

MONITORING
MU SETTINGS

FiG. §

U.S. Patent Nov. 17, 2015 Sheet 6 of 7 US 9,189,195 B2

san OTHER SOURCE | J

~N OF OPERATING
' : DATA)

3 260
: TABLET, EG., |/
PAD

e 270
; INTEGRITY

bod MONITORNG
BOX

FiG. 6

U.S. Patent

Nov. 17, 2015

280

CALUSING
DISPLAY TO
PERFORM A
CALCULATION
AND RETURN | 488
RESULY i

Sheet 7 of 7

US 9,189,195 B2

RECEIVING
DATA FROM A
SENSOR OR
DATA BOURCE

262

CAUSING AN
INCHCATION OF

DATATO
APPEAR ON A
HERLAY

264

BACINITORING
DHSPLAY WITH
AN INTEGRITY

MONITOR

FiG. 7

US 9,189,195 B2

1
INTEGRITY MONITORING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. patent
application Ser. No. 11/872,643, filed Oct. 15, 2007, entitled
“CLOSED-LOOP INTEGRITY MONITOR”, now U.S. Pat.
No. 8,111,920, owned by the assignee of the present applica-
tion and hereby incorporated by reference in its entirety.

BACKGROUND

Prior to the introduction of software to the cockpit suite,
mechanical flight indicators were designed to fail in an obvi-
ous fashion. In this way, pilots would immediately notice
their faulty character, and could take appropriate action. Cur-
rent instruments, however, often include significant amounts
of embedded software.

The Federal Aviation Administration has established strict
guidelines regarding the allowance of embedded software in
avionics instrumentation in aircraft, e.g., the standard
DO-178B was established by the FAA’s Advisory Circular
AC20-115B. DO-178B established categories A-E into
which instrumentation is classified. Category “A” corre-
sponds to the most vital instrumentation, that whose failure is
often catastrophic, e.g., altitude indicators, airspeed indica-
tors, and attitude indicators. Category “B” corresponds to
instrumentation whose failure is hazardous, and so on. Cat-
egory “E” corresponds to instrumentation whose failure has
virtually no effect.

The time and expense of certifying an instrument to a given
level is proportional to the category: category “A” instru-
ments require an elaborate and inordinate amount of time and
expense to certify, while category “E” instruments require
much less so, with the intermediate products in between. This
is in many cases converse to the consideration of the level of
complexity of the instrument: i.e., category “A” instruments
typically deliver simple types of information, e.g., airspeed,
attitude, etc., while lower category instruments deliver much
more complex information, e.g., navigational displays.

There is currently a trend in avionics instrumentation to
provide a cluster of instruments on a single large display.
However, if the cluster includes instruments of more than one
category, all instruments must be certified to the highest cat-
egory. For complex, lower-category instruments, this may
translate to an extraordinary amount of testing to certify a
complex instrument to a category “A”.

SUMMARY OF THE INVENTION

Systems and methods are provided for operating an avion-
ics component to a given level of certification. Steps of the
method include: receiving data from a sensor and sending the
data to at least two components, a data monitor and an integ-
rity monitor, the data monitor operating at a first level of
certification and the integrity monitor operating at a second
level of certification, the second level higher than the first
level; rendering the data sent to the data monitor on a data
display; using the integrity monitor, determining where at
least one feature of the rendered data should appear on the
data display; checking if the at least one feature of the ren-
dered data properly appears on the data display, and if it does
not, causing an error condition to appear on the data display.
The system includes: a sensor for sensing a condition of an
aircraft; a data monitor for receiving data from the sensor and
for at least rendering the data such that the data may be

10

15

20

25

30

35

40

45

50

55

60

65

2

graphically displayed on a data display, the data monitor
certified to a first category level; an integrity monitor for
receiving the same data from the sensor as the data monitor
and for calculating from the data where at least one feature of
the rendered data should appear on the data display, the integ-
rity monitor certified to a second category level, the second
category level higher than the first category level, such that if
the atleast one feature of the rendered data does not appear on
the data display at a proper location, the integrity monitor
causes an error condition to appear on the data display.

It is noted that in certain embodiments the given level of
certification desired may be higher than either of that of the
data monitor or that of the integrity monitor. However, the
combination of the certification levels of the data monitor and
the integrity monitor may result in a higher certification level,
such as the desired given certification level.

In one aspect, the invention is directed to a method of
operating an avionics component to a given level of certifi-
cation. Steps include: receiving data from a sensor and send-
ing the data to at least two components, a data monitor and an
integrity monitor, the data monitor operating at a first level of
certification and the integrity monitor operating at a second
level of certification, the second level higher than the first
level; rendering the data sent to the data monitor on a data
display; using the integrity monitor, determining where at
least one feature of the rendered data should appear on the
data display; checking if the at least one feature of the ren-
dered data properly appears on the data display, and if it does
not, causing an error condition to appear on the data display.

In another aspect, the invention is directed to an avionics
component, including: a sensor for sensing a condition of an
aircraft; a data monitor for receiving data from the sensor and
for at least rendering the data such that the data may be
graphically displayed on a data display, the data monitor
certified to a first category level; an integrity monitor for
receiving the same data from the sensor as the data monitor
and for calculating from the data where at least one feature of
the rendered data should appear on the data display, the integ-
rity monitor certified to a second category level, the second
category level higher than the first category level, such that if
the atleast one feature of the rendered data does not appear on
the data display at a proper location, the integrity monitor
causes an error condition to appear on the data display.

Implementations of the invention may include one or more
of the following. The checking may be performed by a pixel
sniffer, such as one employing pixel decimation or color
range comparison. The comparison made by, e.g., the pixel
sniffer, may be to a specified level of tolerance, such as 90%,
95%, and so on. The error condition may be such that a flag
appears on the screen or that a blank screen appears. The
sensor, data, data monitor, and data display may be, e.g., an
altimeter, an airspeed indicator, or an attitude indicator. If the
instrument is an attitude indicator, the at least one feature of
the rendered data may correspond to at least two points on a
horizon line. If the instrument is an airspeed indicator or an
altimeter, the at least one feature of the rendered data may
correspond to numerals of a numeric display. The second
level of certification may be category A, and the first level of
certification may be category C. The integrity monitor may be
structured and configured to check the integrity of a plurality
of data monitors.

In another aspect, the invention is directed to a computer-
readable medium containing instructions for causing a com-
puter to execute the method.

In one aspect, the invention is directed towards a method of
operating an avionics component, including: configuring set-
tings of a memory management unit to allocate a region of

US 9,189,195 B2

3

memory for an operating system and a region of memory for
an application, the two regions non-overlapping; running an
operating system for the avionics component, within its allo-
cated memory region; running the application, the application
associated with the avionics component within its allocated
memory region; and monitoring the memory management
unit to ensure the operating system cannot alter memory
allocated to the application.

Implementations of the invention may include one or more
of the following. The operating system may be Linux®. The
memory management unit may be monitored to ensure the
operating system cannot address or write to memory allo-
cated to the application. If the monitoring indicates that the
settings are such that the operating system can affect the
memory allocation associated with the application, then the
method may further include causing an alert, e.g., a visible or
audible alert, or both, for causing a substantially blank screen
to appear. The application may be selected from the group
consisting of: an altimeter, an airspeed indicator, a naviga-
tional indicator, and an attitude indicator. The monitoring
may include monitoring a plurality of memory management
units. The memory management unit, operating system, and
application, may be associated with the same avionics com-
ponent. The memory management unit may configure
memory allocation such that application memory is unad-
dressable by the operating system.

In another aspect, the invention is directed towards a non-
transitory computer-readable medium containing instruc-
tions for causing a computer to execute the above method.

In another aspect, the invention is directed towards an
avionics component, including: non-transitory memory con-
taining instructions for causing instantiation of an operating
system; non-transitory memory containing instructions for
causing instantiation of an application; non-transitory
memory, configured by settings, containing instructions for
separating the memories containing instructions for causing
instantiation of an operating system and instantiation of an
application; and non-transitory memory containing instruc-
tions for checking the operation of the memory configured by
settings.

In another aspect, the invention is directed towards a
method of operating an avionics component, including:
receiving data from a sensor or other data source; causing an
indication of the received data to appear on a display device,
the display operating at a first level of certification; and moni-
toring the display device with an integrity monitor, the integ-
rity monitor operating at a second level of certification, the
second level higher than the first level.

Implementations of the invention may include one or more
of'the following. The display device may be a tablet computer.
The monitoring may include causing the display device to
perform a calculation on a known value; sending the results of
the calculation to the integrity monitor; and if the display
device does not achieve a known result corresponding to the
calculation and the known value, then causing an error alert,
e.g., one that is visible or audible, or one causing a substan-
tially blank screen. The integrity monitor may be imple-
mented as a separate instrument, or may be implemented in a
non-transitory computer-readable medium. The monitoring
the display device with an integrity monitor may include
monitoring a display of the indication of the received data.

In another aspect, the invention is directed towards a non-
transitory computer-readable medium containing instruc-
tions for causing a computer to execute the above method.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a schematic diagram of a closed-loop integ-
rity monitor according to the principles described here.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 shows a flowchart of a method according to prin-
ciples described here.

FIG. 3 illustrates a schematic depiction of an avionics
component, including an operating system and an application
running in memory.

FIG. 4 illustrates a flowchart of another method according
the principles described here.

FIG. 5 illustrates another schematic depiction of an avion-
ics component according the principles described here.

FIG. 6 illustrates a schematic layout of a data source, and a
tablet computer for display, where the operation of the tablet
computer is monitored by an integrity monitoring box.

FIG. 7 illustrates a flowchart of another method according
the principles described here.

Like reference numerals refer to like elements throughout.

DESCRIPTION

Inthis description, for exemplary purposes only, an attitude
monitor is described. Such a monitor requires a category A
certification. The display for this attitude monitor is designed,
according to embodiments of the invention, to require a lesser
certification, e.g., a category C certification. However, it
should be noted that the invention is much broader than this
embodiment. In particular, the invention may be employed to
lessen the display categorization needed for any given device,
and to any desired level of certification. In most cases, this
will mean lessening an A or B certification to a lower cat-
egory, such as a C. Typical category A devices to which the
invention will apply may be monitors of attitude, altitude, or
airspeed.

Moreover, neither the data monitor nor the integrity moni-
tor need necessarily to be certified to the desired given certi-
fication level—rather, their combination may result in the
desired certification level.

The present invention employs a particular variety of
redundant monitor, herein termed an integrity monitor, to
check the status of another device. The integrity monitor is
certified to the highest category required, either due to its type
or dueto the type of other devices in the cluster in which it sits.
Thus, to certify a class A device, such as the monitors above,
the integrity monitor must be certified to class A, or the
combination of the data monitor and the integrity monitor
should be certified to class A.

FIG. 1 shows the system 10 and FIG. 2 shows the method
30. As shown in FIG. 109, an attitude gyro 12, shown for
exemplary purposes only, creates data from its incorporated
sensor (step 28) sends its sensed data (step 32) such as pitch
and roll to display software 14. The sensor, display software,
and display have been, in this exemplary embodiment, certi-
fied to, e.g., a category C level. This is two levels less than a
typical attitude monitor. The display software 14 then causes
the pitch and roll data to be displayed graphically on the
attitude display 16 (step 34).

The attitude gyro 12 also sends a parallel set of data (step
32) to an integrity monitor 26, which has been certified to,
e.g., a category A level. The integrity monitor 26 may exist
entirely in software, hardware, or a combination of both, and
typically has no separate display associated therewith.

The integrity monitor 26 thus receives data from a device
sensor (in FIG. 1, gyro 12) and determines how a feature of a
display corresponding to that data should appear (step 36). As
an example, for an attitude display, the integrity monitor may
calculate and thus determine where the line ends of the hori-
zon line should appear. In another embodiment, any two
points of the horizon line may be employed. Using a “pixel
sniffer” and checking the data corresponding to the rendered

US 9,189,195 B2

5

signal (using, e.g., the “pixel sniffer” data communication
line 28 shown in the figure), the integrity monitor 26 may
check, to a given category certification level, if the attitude
display 16 is showing what it should (step 38). If it is not, an
error condition may be output to the attitude display, e.g., a
red flag may appear, or the screen may be made blank (such as
via shutting off a back light, or even cutting off power to the
device). In some cases, a flag or blank screen may alternately
appear, depending on the severity of the malfunction. Upon
causing a flag to appear, or other error condition, the integrity
monitor may then check that the error condition is appearing
on the display, and a more severe indication may be given
upon recognition that the error condition is not displaying
properly.

Other error indications may be used, so long as the pilot is
immediately notified that attention is necessary because a
device has been lost (step 42). Generally, the error condition
should be such that the error is obvious to the pilot, as opposed
to a more subtle indication.

In many cases a pixel sniffer is dedicated to just one device.
However, in some cases, multiple pixel sniffers may send
data, e.g., in alternating time frames, to one integrity monitor,
to allow multiple devices to be checked with just one integrity
monitor.

Besides the line ends as disclosed above, any other part of
the line may be checked for integrity and certification. For
airspeed or altitude indicators, the “pixel sniffer” may check
a numeric display, such as using correlator functionality, to
check if the display is displaying the proper set of numerals
(sensed data values) corresponding to the measured sensor
data. Such functionality may be enhanced by more detailed
knowledge of the display, e.g., the fonts used. The system and
method may allow that a match be defined at any specified
level of tolerance, such as if over 90% of pixels match. In
addition to checking lines and numerals, the system and
method may also provide for a check for shapes, such as by
comparing to known or expected shapes.

In any case, the pixel sniffer may employ techniques such
as pixel decimation and color range comparison.

In this way, all of the benefits of a category A device are
obtained, while the more complicated graphical display need
be certified only to a lesser category level.

In another implementation, systems and methods accord-
ing to the principles described here may be employed to
provide a degree or level of certification to a resident appli-
cation such as an operating system, e.g., Linux®. In a Linux®
implementation, the operating system provides a robust envi-
ronment including many seasoned communication stacks,
e.g., TCP/IP, USB, and the like. However, Linux® is not
certified to the level necessary to be a part of many avionics
applications. To eliminate the need to certify all of such an
operating system, such certification being highly costly, the
avionics application itself may be protected so that the oper-
ating system cannot alter the application’s operating environ-
ment, e.g., application code and data, once the application is
loaded and running. In this case, only the application requires
certification at the highest level, and not the operating system
such as Linux®.

As an initial matter, it is noted that a level of partitioning
may be employed. Safety systems commonly require parti-
tioning, so one application does not conflict with another. In
this way, if two applications are running in memory, one
application cannot affect the operation of the other. One way
to enforce such partitioning is by way of a memory manager.

Certain operating systems, such as Linux®, provide just
such a memory manager, in Linux® termed a memory man-
agement unit or “MMU”, but again the same is not certified.

10

15

20

25

30

35

40

45

50

55

60

65

6

In implementations according to the present principles, and
referring to FIG. 3, a system 200 is designed such that an
operating system 210 and MMU 230 arranges an application
220 such that the application to 20 is running in its own
memory space and such that the operating system can never
affect it.

One issue in such an implementation is to verify that the
operating system and MMU performed the partitioning task
properly and that the partitioning task was not reversed, or
otherwise defeated. In one feature of the implementation, a
monitor 240 is provided for the MMU, and the monitor 240
reads the settings on the MMU 230, to ensure that the same
have not been changed or otherwise modified. Settings may
be read on various bases, e.g., per second, per minute, or the
like.

In another feature of the implementation, the MMU 230
arranges the memory allocation such that the memory in
which the application 220 is run is addressable by the MMU
230 but not by the operating system 210. In other words, the
MMU knows the memory is there but not the operating sys-
tem. As far as the operating system 210 is concerned, it is
unaddressable memory. For example, if an application
attempted to write into this memory, the operating system 210
would return a page fault.

In yet another feature of certain systems according to the
principles described here, the system may be provided with
one or more watchdog timers. For example, each thread may
be associated with one or more watchdog timers. If the system
fails to operate, the watchdog timer may enter an alarm con-
dition and reset the system. In this way, the operating system
210 is rendered substantially irrelevant to the safe operation
of the application 200 and, the application thus cannot be
corrupted by the operating system, although it could in some
implementations reset or turn off, both of which would be
highly noticeable events to the pilot.

In an exemplary method according to the above principles,
a flowchart 290 is illustrated in FIG. 5, having a first step of
configuring settings of a memory management unit to sepa-
rate application memory and operating system memory (step
252). The operating system may then be run (step 254), as
well as the application (step 256). The MMU settings may
then be monitored to ensure that the same are not changed or
altered such that application memory may be addressed by
the operating system (step 258).

An exemplary avionics component 300 is illustrated in
FIG. 6, according to the principles described here. The avi-
onics component 300 includes memory 252' for configuring
settings associated with the MMU to separate application
memory and operating system memory. The component 300
further includes memory 254' for instantiating or otherwise
running an operating system. The component 300 further
includes memory 256' for instantiating or otherwise running
the application, e.g., an avionics application. Finally, the
component 300 includes memory 258' for monitoring the
MMU settings. Other memories and subsystems will also be
understood.

Variations of the above system and method will be seen.
The application employed to monitor the MMU may be gen-
erally a certified application, e.g., level C. If it was desired to
certify such a system to an even higher level, e.g., level A, a
system such as that described with respect to FIGS. 1 and 2
may be employed. Alternatively, the application employed to
monitor the MMU may itself be level A. In such implemen-
tations, the operating system, e.g., Linux®, may be certified
at a very low level, or not at all, and still be employed. The
monitor 240 employed to monitor the MMU may be of any
kind. If a particular avionics instrument is to be monitored at

US 9,189,195 B2

7

multiple levels of certification within its “box™, e.g., alevel A
portion and a level C portion, an external monitor may be
employed to monitor just at the level A portion.

The system described above includes many advantages,
including that the very high expense of certified operating
systems is avoided.

In a more detailed implementation, the MMU provided by
the avionics system’s CPU may be employed to protect the
application’s code and data from the operating system. In an
exemplary implementation, a CPU core may be employed
that provides a memory management unit or MMU that
allows for two types of address translation, page and block.
Operating systems such as Linux® use page address transla-
tion to map application and kernel address space. Such oper-
ating systems also use block address translation to map some
of'the kernel, e.g., Linux® kernel, which is done at boot time
and is not modified once set up. Block address translation
may take precedence over page address translation. That is, if
a virtual address is mapped by both the page and block
mechanisms, the block mechanism will be used to translate
the address from virtual to physical space. In a Linux® imple-
mentation, Linux® applications may run in user space and the
Linux® kernel runs in kernel space.

The MMU also provides two basic address spaces, user and
kernel. Various types of protection schemes may be
employed: no access to user or kernel space; no access to user
space, read only kernel space; no access to user space, read
and write from kernel space; read only user space, read only
kernel space; read only user space, read and write from kernel
space; or read and write from user space, read and write from
kernel space. In other words, most MMUs provide stricter
access to user space than kernel space. However, in the pro-
tection scheme outlined above, stricter access to kernel space
than user space is required. In one implementation, using a
MPC5121e MMU, the same does not provide for this in
hardware. So a scheme was devised to provide the desired
protection using software. In the Linux® implementation, the
Linux® OS’s well-defined interfaces were employed for
switching between user and kernel space.

There are basically three mechanisms: the firstis a “system
call”, in which the application traps into the kernel for a
particular OS service; the next employs “interrupts”, where
hardware asynchronously causes a switch from user to kernel
space (there is no switch if already in kernel space when the
interrupt occurs); and the third is that employing a “signal” (in
this implementation, the kernel, asynchronously to the appli-
cation, switches from kernel space to user space). Thus when-
ever a switch is made from user space to kernel space, the
MMU protection for the application’s code and data may be
changed from “Read/write user/kernel space” to “Read only
user/kernel space”. Whenever a switch is made from kernel
space to user space, the MMU protection for the application’s
code and data may be changed from “Read only user/kernel
space” to “Read/write user/kernel space”.

As noted above, the Linux® OS uses page memory to
manage the application address space. Also, the block
memory management may be setup at boot time and not
altered. So if the block memory management is used to man-
age the avionic’s application’s code and data, there are no
conflicts with the Linux® OS.

MPC5121e Specific Solution

For the MPC5121e MMU described above, two types of
memory management are provided, page and block. In the
specific MPC5121e solution, we take advantage of the block
address translation (BAT) provided by the MMU. Certain
steps of a solution follow:

5

10

15

20

25

30

35

40

45

50

55

60

65

8

(1) An operating system character device driver may be
written to manipulate MMU BAT registers (termed
“UBATDEV?). In this regard it is noted that the hard-
ware cannot be accessed directly from user space, and so
the device driver is required.

(2) An area of memory outside the scope of the OS may be
reserved and delete configured to be not managed by the
operating system, e.g., Linux®.

(3) The application is loaded the application into memory
using the normal operating system program loader.

(4) A BAT register is mapped to the area of memory not
managed by the OS, e.g., using UBATDEV.

(5) The application’s code and data may be copied from the
area managed by the operating system to the area not
managed by the operating system.

The BAT register may be changed so that the virtual
address range overlays the address range specified by the
operating system program loader. In this way the MMU is
being used to replace the physical memory mapped and man-
aged by the OS to the physical memory outside the scope of
the OS; however, the virtual address is the same and as far as
the OS is concerned, nothing has changed. In this case, the
BAT mapped memory takes precedence over the page
mapped memory, using UBATDEV. The BAT register is setto
read/write, and this remapping is done in user space. The OS
is changed to make the BAT read only when switching to
kernel space and read/write when switching to user space.

Linux® OS UBAT Changes

In a specific Linux® implementation, the Linux® OS
UBAT changes may be encompassed in the compile-time
variable CONFIG_UBAT_MAPPER. For example, the fol-
lowing files may be changed:

arch/powerpc/platforms/512x/Kconfig
include/asm-powerpc/thread__info.h
include/asm-powerpc/uaccess.h
arch/powerpc/kernel/asm-offsets.c
arch/powerpe/mm/init_ 32.c
arch/powerpc/kernel/entry_ 32.S
arch/powerpc/kernel/head_ 32.S
arch/powerpe/mm/fault.c
arch/powerpe/platforms/512x/mpe5121__ads.c

The BAT registers may then be employed to protect the
avionics application. The MPC5121e MMU provides 8 data
BATs and 8 instruction BATs. In one implementation of the
Linux® OS used for the avionics application, BATs 0-3 are
employed for internal use, which leaves BATs 4-7 available
for the solution, e.g., DBAT6/DBAT7 and IBAT6/IBAT7. As
noted above, it may be necessary to change the BAT registers
used for mapping the application to “read-only” when tran-
sitioning from user space to kernel space and to “read-write”
when transitioning from kernel space to user space.

Also, as noted above, Linux® device drivers are employed
to manipulate MMU BAT registers and the same use special
routines to copy data between user and kernel space, these
routines being generally defined in the include/asm-powerpc/
uaccess.h module. It is considered illegal for the application
to make a system call which forces the kernel to copy data
from kernel space to UBAT mapped user space, as the point of
the UBAT mapper is to protect the application from the ker-
nel. Thus, copying from kernel space to UBAT-mapped user
space violates such protection. The uaccess.h module may be
altered (as indicated with CONFIG_UBAT_MAPPER) to
detect situations where the kernel is attempting to write to
UBAT-mapped user space.

US 9,189,195 B2

9

In one case, the inline function ubat_mapped() is added to
the include/asm-powerpc/uaccess.h module. This routine
returns non-zero if the specified virtual address range (addr/
size) is UBAT-mapped in the current task. Otherwise, zero is
returned.

The ubat_mapped() function may use the ubat_start and
ubat_end fields added to the thread_info structure. These
values will be zero in tasks that are not UBAT mapped and
non-zero as set up by the ubatdev device driver in UBAT-
mapped tasks.

The following purely exemplary lines of code may be
added to the inline access_ok() function to catch kernel
writes to UBAT-mapped memory:

if (type == VERIFY__ WRITE && ubat__mapped(addr, size))
return 0;
#ifdef CONFIG_UBAT_MAPPER
#define original_access__ok(type, addr, size) \
(___chk_user_ ptr(addr), \

access ok((___force unsigned long)(addr), (size), get_ fs()))
static inline int ubat__mapped(const void ___user* addr, unsigned long
size)

{
unsigned long start = current_thread__info()—>ubat__start;
if (unlikely(start)) {
unsigned long end = current_thread__info()—>ubat__end;
int mapped = (((unsigned long)addr) + size > start) &&
(((unsigned long)addr) <= end);
if (unlikely(mapped)) {
extern void print_ ubat_ mapping(const char* func,
const void ___user* addr,
unsigned long size);
print_ubat__mapping(_ FUNCTION___, addr, size);
return 1;

return O;
static inline int access__ok(int type,

const void user* addr,
unsigned long size)

{
if (type == VERIFY__ WRITE && ubat__mapped(addr, size))
return 0;
return original__access__ok(type, addr, size);
}
#else

static inline int ubat__mapped(const void ___user* addr, unsigned long
size) {return 0;}
#define access__ok(type, addr, size) \
(___chk_user_ptr(addr), \
___access__ok((___force unsigned long)(addr), (size), get__fs()))
#endif

In yet another implementation, and referring to the system
280 of FIG. 6, an uncertified device such as a tablet 260 or
other computer, e.g., an iPad®, may be configured for use as
aflight instrument, certified by a wired or wireless connection
to a circuit or application which checks its integrity, which
may simply be embodied in a handheld box 270. In essence,
the integrity monitoring circuit or application “integrity
monitors” a remote application. The tablet 260 may, e.g.,
display data from a sensor or other source 250 of operational
data.

In the method illustrated by flowchart 290 of FIG. 7, a first
step is to receive data from a sensor or data source (step 262).
An indication is then made of the received data and caused to
appear on a display (step 264). The display is then monitored
with an integrity monitor (step 266). The integrity monitor
may check the display by methods disclosed above, e.g., with
the pixel sniffer, or may cause the display to perform a cal-
culation and to return the result (step 268). In this way, the

10

15

20

25

30

35

40

45

50

55

60

65

10

display application may be checked to see if it is operating
properly, e.g., has encountered an error, has crashed, or the
like.

Inmore detail, the application running on the tablet or other
computer may communicate through a normal wireless chan-
nel like Bluetooth® to a device, e.g., a sensor. The monitor
may be configured such that if it does not receive monitored
information from the host, then it can independently produce
a flag or other annunciation to alert an operator that there is
something wrong with the system.

Besides as a separate box, the monitor may also be situated
with the watchdog circuits noted above, and as such may
communicate to the host through a remote channel, e.g., the
wireless Bluetooth® channel. Various aspects may be moni-
tored. For example, the display pixel, execution flow, or the
like. For example, a calculation using a known value, and thus
calculating a known result (step 268), may be asked of the
tablet or other monitored application, and successful perfor-
mance of the calculation may cause an “OK” signal to be
returned.

In another example, if the program is executing different
threads, one or more of the same may be monitored and the
same may report back that the sensor (or other host or appli-
cation) is operating normally. If not, the monitor may shut
down the tablet or other computer, or may otherwise give a
signal or other annunciation or alert to indicate improper
operation being detected.

In this way, the tablet or other computer may serve as a part
of'a complete avionics system operating in the aircraft, moni-
tored by a small box. Currently, such tablets may be employed
for functions such as charting, but with systems and methods
according to the principles disclosed here, the same may be
employed even as standby instrumentation.

The monitoring box may employ standalone hardware,
configured for performing monitoring functions, e.g., for
transmitting test calculations and values and receiving
results. The same may be an interface box, may have sensors
within, or may even include an entire sensor suite. For
example, the tablet may have a GPS unit or it may monitor a
GPS unit.

While tablet computers such as iPad®s have been dis-
closed, it will be understood that any computing device may
be monitored using the principles disclosed above.

Systems and methods according to principles disclosed
here may be fully implemented in any number of computing
devices. Typically, instructions are laid out on computer-
readable media, generally non-transitory, and these instruc-
tions are sufficient to allow a processor in the computing
device to implement the method of the invention. The com-
puter-readable medium may be a hard drive or solid state
storage having instructions that, when run, are loaded into
random access memory. Inputs to the application, e.g., from
the plurality of users or from any one user, may be by any
number of appropriate computer input devices. For example,
users may employ a keyboard, mouse, touchscreen, joystick,
trackpad, other pointing device, or any other such computer
input device to input data relevant to the calculations. Data
may also be input by way of an inserted memory chip, hard
drive, flash drives, flash memory, optical media, magnetic
media, or any other type of file—storing medium. The outputs
may be delivered to a user by way of a video graphics card or
integrated graphics chipset coupled to a display that may be
seen by a user. Alternatively, a printer may be employed to
output hard copies of the results. Given this teaching, any
number of other tangible outputs will also be understood to be
contemplated by the invention. For example, outputs may be
stored on a memory chip, hard drive, flash drives, flash

US 9,189,195 B2

11

memory, optical media, magnetic media, or any other type of
output. It should also be noted that the invention may be
implemented on any number of different types of computing
devices, e.g., personal computers, laptop computers, note-
book computers, net book computers, handheld computers,
personal digital assistants, mobile phones, smart phones, tab-
let computers, and also on devices specifically designed for
these purpose. In one implementation, a user of a smart phone
or WiFi—connected device downloads a copy of the applica-
tion to their device from a server using a wireless Internet
connection. An appropriate authentication procedure and
secure transaction process may provide for payment to be
made to the seller. The application may download over the
mobile connection, or over the WiF1i or other wireless network
connection. The application may then be run by the user. Such
a networked system may provide a suitable computing envi-
ronment for an implementation in which a plurality of users
provide separate inputs to the system and method. In the
below system where aircraft components is monitored, the
plural inputs may allow plural sensors or sources to be moni-
tored at one time.

Of course, various aspects, components, or steps of the
embodiments described above may be replaced with others
and still fall within the scope of the invention. For example,
the pixel sniffer may be replaced with any data analyzer that
can determine if a particular pixel or group of pixels is a
particular color or at a particular state of activation. The
attitude monitor described may be replaced by, or accompa-
nied by, any other type of device, such as are named above, as
well as others. Therefore, the scope of the invention is to be
limited solely by the claims appended here, and equivalents
thereof.

The invention claimed is:

1. A method of operating an avionics component, compris-

ing:

a. configuring settings of a memory management unit to
allocate a region of memory for an operating system and
a region of memory for an application, the two regions
non-overlapping;

b. running an operating system for the avionics component,
within a memory region allocated to the operating sys-
tem;

c. running the application, the application associated with
the avionics component within a memory region allo-
cated to the application; and

20

30

40

12

d. monitoring, at predefined intervals, the memory man-
agement unit to ensure the operating system cannot alter
memory allocated to the application;

e. wherein the memory management unit is monitored to
ensure that the operating system cannot write to memory
allocated to the application.

2. The method of claim 1, wherein the memory manage-
ment unit is monitored to ensure the operating system cannot
address memory allocated to the application.

3. The method of claim 1, wherein if the monitoring indi-
cates that the settings are such that the operating system can
alter memory associated with the application, then further
comprising causing an alert.

4. The method of claim 3, wherein the alert is visible or
audible.

5. The method of claim 4, wherein the alert is a substan-
tially blank screen.

6. The method of claim 1, wherein the application is
selected from the group consisting of: an altimeter, an air-
speed indicator, a navigational indicator, and an attitude indi-
cator.

7. The method of claim 1, wherein the monitoring includes
monitoring a plurality of memory management units.

8. The method of claim 1, wherein the memory manage-
ment unit, operating system, and application, are associated
with the same avionics component.

9. The method of claim 1, wherein the memory manage-
ment unit configures memory allocation such that application
memory is unaddressable by the operating system.

10. A non-transitory computer-readable medium contain-
ing instructions for causing a computer to execute the method
of claim 1.

11. An avionics component, comprising:

a. memory containing instructions for causing instantiation

of an operating system;

b. memory containing instructions for causing instantiation
of an application;

c. memory, configured by settings, containing instructions
for separating the memories containing instructions for
causing instantiation of an operating system and instan-
tiation of an application; and

d. memory containing instructions for checking, at pre-
defined intervals, the operation of the memory config-
ured by settings, to ensure the operating system cannot
write to memory allocated to the application.

#* #* #* #* #*

